
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

1

Need to reinvent the storage stack in cloud computing

Sagar Wadhwa
1
, Dr. Naveen Hemrajani

2

 1 M.Tech Scholar , Suresh Gyan Vihar University, Jaipur , Rajasthan , India

 2 Profesor , Suresh Gyan Vihar University, Jaipur , Rajasthan , India

Abstract

Cloud computing offer a prevailing abstraction which

provide a scalable, virtuale infrastructure as a service

where the difficulty of fine-grained resource management

is secreted from the end-user. Running data analytic

applications in the cloud on enormously large data sets is

acquire traction as the essential infrastructure can meet

the extreme need of scalability. Naturally, these

applications (e.g., business intelligence, surveillance

video searches) influence the MapReduce framework that

can decompose a large computation into a set of smaller

parallelizable computations. More often than not the

underlying storage architecture for running a MapReduce

application is based on an Internet-scale filesystem, such

as GFS, which does not provide a standard (POSIX)

interface.

1. Introduction

Cloud computing is a compelling new paradigm

that provides a scalable, virtualized infrastructure

as a service, thereby, enabling the end-user to

exploit supercomputing power on demand without

investing in huge infrastructure and management

costs. This potential for unlimited scaling has made

possible a plethora of cloud-based data analytics

applications that can process extremely large sets

of data.

Such data-intensive applications where the

computation can be easily decomposed into smaller

parallel computations over a

partitioned data set are a perfect match for

Google’s MapReduce framework [2] that provides

a simple programming model using map and

reduce functions over key/value pairs that can be

parallelized and executed on a large cluster of

machines.

More recently, an open source version of

MapReduce developed under the Apache Hadoop

project is becoming a popular platform for building

cloud data analytics applications.

In this paper, we revisit the debate on the need of a

new non-POSIX storage stack for cloud analytics

and argue, based on an initial evaluation, that it can

be built on traditional POSIX-based cluster

filesystems. Existing deployments of cluster file

systems such as Lustre, PVFS, and GPFS [4] show

us that they can be extremely scalable without

being extremely expensive. Commercial cluster file

systems can scale to thousands of nodes while

supporting 100 GBps sequential throughput.

Furthermore, these file systems can be configured

using commodity parts for lower costs without the

need for specialized SANs or enterprise-class

storage. More importantly, these file systems can

support traditional applications that rely on POSIX

file API’s and provide a rich set of management

tools. Since the cloud storage stack may be shared

across different classes of applications it is prudent

to rely on standard file interfaces and semantics

that can also easily support MapReduce style

applications instead of being locked in with a

particular non-standard interface. To this end, we

address the challenges posed by the access

characteristics of cloud analytics applications to

traditional cluster file systems. First, we observe

that MapReduce-based applications can co-locate

computation with data, thus reducing network

usage. We present modifications to the cluster

filesystem’s data allocation and data layout

information to better support the requirements of

data locality for analytics applications. Next, we

observe that using large stripe unit sizes (or

chunks) benefits MapReduce applications at the

cost of other traditional workloads. To address that,

we introduce a novel concept called metablock that

can enable the choice of a larger block granularity

for MapReduce applications to coexist with a

smaller block granularity required for pre-fetching

and disk accesses for traditional applications.

While most analytics applications are read-

intensive, we also enable write affinity that can

better the performance of storing intermediate

results by writing data locally.

We compare the performance of both an Internet

scale filesystem (Hadoop’s HDFS) with a

commercial cluster filesystem (IBM’s GPFS) over

a variety of workloads. We show that a suitably

optimized cluster filesystem can match the

performance of HDFS for a MapReduce workload

(ideal data access pattern for HDFS) while

outperforming it for the data access patterns of

traditional applications. Concurrent to our work,

researchers at CMU have undertaken an effort to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

2

provide support for Hadoop’s MapReduce

framework with PVFS [5]. It should be noted that

we don’t report HDFS performance for traditional

file benchmarks since these benchmarks cannot be

run on HDFS (even running with a FUSE layer

only provides a subset of the POSIX interface).

2. Challenges

In this section, we evaluate the suitability of cluster

file systems for cloud analytics applications. In our

study, we selected for comparison the HDFS

(Hadoop 18.1) filesystem which is the de-facto

filesystem for Apache’s Hadoop project and IBM’s

GPFS cluster filesystem which is widely deployed

in high-performance computing sites and whose

source was readily available to us for modification.

The hardware configuration we used is based on

the IBM iDataPlex modular hardware architecture

consisting of a single iDataPlex system with 42

nodes in two racks, where each node has 2 quad-

core .2 GHz Intel Core2Duo CPUs, 8 GB RAM

and 4 750 GB SATA drives. The nodes are

connected by 2 Gigabit Ethernet switches (one per

rack) with a 1 Gbps inter-switch link. The switch is

Blade Network Technologies G8000 RackSwitch

with 48 1 Gbps ports. The software running on

each of these nodes in Linux 2.6.18 (CentOS 5.3)

with two disks dedicated to the ext3 file system for

storing intermediate results from computations and

the remaining two disks dedicated to either GPFS

or HDFS.

Function shipping. The first drawback we found

of cluster file systems is that they do not support

shipping computation to data, a key feature

exploited by the MapReduce class of applications

[2]. In addition, the default block sizes are small

which leads to a high task overhead for MapReduce

applications that schedule one task per data block.

To evaluate the effect of function shipping, we

measured performance of a simple MapReduce

grep application with GPFS and HDFS. The input

to the grep application is a 16 GB text file. The

Hadoop implementation did not take advantage of

any block location information in GPFS and

function shipping was not enabled as a result.

Furthermore, we used the default block size of 64

MB in HDFS, whereas for GPFS we used a block

size of 2 MB with pre-fetching turned on by

default.

The lack of co-location of computation with data,

and the use of small blocks, are the main reasons

for the slow-down in GPFS. In fact, the total

amount of data transferred exceeds the input data

size because of the default pre-fetching in GPFS.

The filesystem sees 2 MB of data being read

sequentially and pre-fetches multiple data blocks to

satisfy expected reads.However, the map task for

the next block may be cheduled on another node

and thus most of the pre-fetched data is not used.

High availability. Another requirement for data

intensive applications is the ability to mask the

failures of commodity components. Programs

should be able to recover and progress in the event

of multiple node and disk failures. This requires the

data to be replicated across multiple nodes such

that in the event of a node or disk failure, the

computation can be restarted on a different node.

Specialized file systems are designed based on this

philosophy, and are able to tolerate multiple

failures in the infrastructure GPFS, for example,

uses a single source replication model, with the

writer forwarding copies to all replicas. Specialized

file systems, in contrast, use pipelined replication

due to two important considerations: first, the out-

bound bandwidth at the writer is not shared across

multiple streams unlike the single-source model;

second, write data can be pipelined in sequence

from a node to the next node in the pipeline while

the data is being written in the node.

For traditional applications, cluster file systems

allow the use of concurrent writers to the same file,

enabling the sharing of write bandwidth across

multiple nodes. MapReduce applications usually

have multiple simultaneous writers (to different

files), so we don’t expect the benefits of single-

source replication to be significant. We hypothesize

that it is possible for cluster file systems to match

the write performance of specialized file systems

and validate that in the experimental evaluation in

Sections 4 and 5. However, we are continuing to

explore the use of pipelined replication in cluster

file systems.

3. Metablocks

Clearly, the grep application in the previous section

demonstrated that running a MapReduce based

application on a specialized file system has much

better performance. In this section, we first attempt

to mimic the basic properties of a specialized file

system in GPFS and show the limitations of this

approach. Next, we introduce the concept of a

metablock, highlight the challenges in

implementing the concept and demonstrate that

GPFS is able to match the read performance of

HDFS for MapReduce applications.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

3

Large blocks. One approach would be to mimic

the properties of specialized file systems as

attempted in [5]. To achieve this, we increase the

block size to a large value (16 MB) so that the map

task and disk seek overhead is reduced (as one map

task is assigned to each data block and will fetch

the entire block for processing). Furthermore, we

expose GPFS’s block location information to the

MapReduce layer in Hadoop so that tasks could be

scheduled on the node where the data resides. In

addition, we align the records in the input file with

block boundaries, because a lack of alignment

could result in the fetch of a large data block just to

read a partial record that straddles a block

boundary. Finally, we turned pre-fetching off to

avoid the network traffic of transporting large data

blocks. This particular version of GPFS is referred

to as GPFS lb (GPFS with large blocks).

However, the performance parity with HDFS

comes at a price. Turning off pre-fetching and

making the unit of caching File Normalized

Random Normalized Sequential System

Performance Performance Unmodified GPFS 1 1

GPFS lb 0.15 2.29 GPFS mb 0.99 1.19: Evaluation

of GPFS optimizations with Bonnie. large in GPFS

lb is detrimental to the performance of traditional

filesystem workloads. Pre-fetching has been

demonstrated to be extremely beneficial for

sequential workloads and small block sizes are

ideal for random workloads. To verify these

effects, we compared unmodified GPFS to GPFS lb

using the popular Bonnie filesystem benchmark

[1]. The results show a marked performance

degradation for random workloads with the

optimizations used in this section. There is an

improvement for sequential workloads due to the

large block size but the scale is not commensurate

to the extent of the previously mentioned

degradation.

Metablocks. The results of the evaluation indicate

an interesting tradeoff in optimizing for data

intensive and traditional applications. While a large

block size is needed to minimize seek overheads

and create a reasonable number of tasks in

MapReduce applications, a small block size is

needed for effective cache management and to

reduce the pre-fetch overhead particularly when

application records could span multiple blocks on

different disks. Ideally, we need the best of both

worlds where both seeks and pre-fetching are

optimized so that both MapReduce and traditional

applications can be supported. If the cluster file

system could expose a large node-local block size

to the MapReduce application and use a smaller

block size for internal book-keeping, data transfer

and pre-fetching, we can achieve the tradeoff. To

better understand how we can manage this, we first

describe the block allocation strategy used by

GPFS.

GPFS implements wide-striping across the file

system where large files are divided into equal

sized blocks, and consecutive blocks are placed on

different disks in a round-robin fashion. An

allocation map keeps track of all disk blocks in the

file system. To enable parallel updates to the

allocation 3 bit map, the map is divided into a large

number of lock-able allocation regions, with at

least n regions for an n node system. Each region

contains the allocation status of 1=nth of the disk

blocks on every disk in the file system. This bitmap

layout allows GPFS to allocate disk space properly

striped across all disks by accessing only a single

allocation region at a time. This approach

minimizes lock conflicts because different nodes

can allocate space from different regions. The

allocation manager is responsible for keeping the

free disk space statistics loosely- up-to-date across

the cluster.

To balance the block size selection tradeoff, we

define a new logical construct called a metablock.

A metablock is basically a consecutive set of

blocks of a file that are allocated on the same disk.

For example, 64 blocks of size 1 MB could be

grouped into a 64 MB metablock. The GPFS

round-robin block allocation is modified to use a

metablock as the allocation granularity for the

striping across the disks. Consequently, the block

location map returned to the MapReduce

application is also at the metablock granularity with

the guarantee that all blocks in the metablock are in

the same disk. Internally for all other pre-fetching

and accesses, GPFS uses the normal block size

granularity (which is 1 MB in our example).

However there are two important challenges in

implementing metablocks in GPFS – contiguity and

fragmentation. First, it may not be possible to get a

region with a set of blocks that is able to satisfy the

contiguity requirement of a metablock. In such a

situation, the node trying to allocate a metablock

will need to request a region with a contiguous set

of blocks that can be used to build a metablock.

However, a request to the allocation manager may

incur network latency and affect the performance of

a MapReduce application. To remedy the situation,

a node prefetches a pool of contiguous regions

ahead of time and requests new regions when the

cardinality of the pool drops below a threshold.

This means that a node will always have a ready

pool of contiguous regions and will not incur

network latency in the path of an I/O request.

A possible cause for concern is that the metablock

optimization, which changes GPFS’s allocation

scheme, could have affected the performance of

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

4

traditional applications. To confirm this hypothesis,

we compared unmodified GPFS to GPFS mb. The

results of the experiment show no marked

difference between the two file systems. The other

results from Bonnie were also consistent with this

result. Consequently, we conclude that metablocks

do not hurt the performance of GPFS for traditional

applications. It is important to note that this change

to the allocation policy of the cluster file system

does not impact the interface to the applications,

and preserves the POSIX semantics provided by

the unmodified system.

4. Real – Life Benchmarks

We selected three benchmarks to analyze the

relative efficiencies of the specialized and cluster

file systems and their effect on MapReduce

applications: Hadoop grep, Teragen and Terasort

applications. Teragen does a parallel generation of

a large data set and is consequentially write-

intensive. The grep application does a search for a

regular expression on the input data set and is read-

intensive and Terasort does a parallel mergesort on

the keys in the data set and does heavy reading and

writing in phases.

We used the default block size of 64 MB for HDFS

and set the metablock size for GPFS to be 64 MB

as well, for a fair comparison. We found that using

1 MB as the block size of GPFS was the best

compromise between the performance of traditional

and MapReduce applications, and results presented

here use that value. Furthermore, we ran the

benchmarks on 16 node clusters with two

configurations - in the first, all nodes were in one

rack, while in the second, the nodes are equally

distributed across 2 racks. The 1-rack setup

essentially provides 1 Gbps links between each

node-pair, while the 2-rack setup has a network

bottleneck in the form of a single 1 Gbps link

between the two 8-node sub-clusters. In the 2-rack

setup, when we enable 2-way replication, we

configure the file systems to replicate 1We have

isolated this issue to an unusual interaction between

our data ingestion and GPFS allocation, and are

improving the performance further. 4 each block so

that one copy is on each rack, for better fault

tolerance. 0 500 1000 1500 2000 Grep-r1 Grep-r2

Teragen-r1 Teragen-r2 Sort-r1 Sort-r2 Execution

Time (seconds) Execution time HDFS and GPFS

with metablocks HDFS-rep1 GPFS_mb rep1

HDFS-rep-2 GPFS_mb-rep2 : Benchmark

evaluation of HDFS and PFS mb, using 160GB of

input data and 16 nodes; replication factor = 1 (rep-

1), 2 (rep-2). The 1-rack configuration is marked as

r1, and the 2-rack configuration as r2.

5. Future Optimizations

The results above encouraged us to look more

closely at avenues for improvement of cluster file

systems for MapReduce workloads. The most

important was trying to make writes as network

efficient in GPFS as they are in HDFS (due to the

first replica being written to the local node). We

designed an extension to metablocks which has

allowed GPFS to potentially match the

performance of HDFS for writes as well. The

extension involves adding an ioctl call to GPFS

which lets an application specify the set of hosts to

be used by the metablock allocation scheme for a

particular file. This allows Hadoop applications to

specify that the first copy of data should reside on

the local host, which is the policy used by HDFS.

This technique reduces the network traffic during

writes, and significantly improves write

performance (up to a factor of 5). True to our

theme, we use GPFS with pre-fetching enabled to

benefit traditional as well as MapReduce

workloads. This, however, exposes two interesting

questions we are currently exploring: (1) Can we

design an adaptive prefetching scheme such that it

only consumes spare network bandwidth, and does

not contend with critical network traffic? (2) Can

any MapReduce workloads benefit from such

prefetching, thereby outperforming HDFS?

Similarly, we are also pursuing use cases of

MapReduce workloads where GPFS, can in fact,

outperform HDFS by leveraging features unique to

a true file system such as ability to cope with

client-side caching, and simultaneously support

random and sequential workloads.

6. Conclusions

This paper evaluate the discuss whether cluster file

systems can potentially go with the performance of

Internet scale filesystems for cloud-based analytics

applications. We inspect the needs of data intensive

applications and prove that cluster file systems are

scarce in support for large block sizes and revealing

block location information to MapReduce

applications. In order to solve this, we bring in the

idea of metablocks that provide the delusion of

large blocks for MapReduce applications, as

providing the profit of small blocks for old

applications at the same time. We demonstrate that

a cluster file system improved with metablocks can

provide the best performance.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

5

References

[1] The Bonnie Filesystem Benchmark.

http://www.textuality.com/bonnie/.

[2] J. Dean and S. Ghemawat. Mapreduce:

Simplified data processing on large clusters. In

Sixth Symposium on Operating System

Design and Implementation, pages 137–150,

December 2004.

[3] S. Ghemawat, H. Gobioff, and S. Leung. The

Google file system. In ACM SOSP, October

2003., 2003.

[4] F. Schmuck and R. Haskin. GPFS: A shared-

disk file system for large computing clusters.

In Proc. of the First Conference on File and

Storage Technologies (FAST), pages 231–244,

Jan. 2002.

[5] W. Tantisiriroj, S. Patil, and G. Gibson. The

crossing the chasm: Sneaking a parallel file

system into hadoop. In SC08 Petascale Data

Stroage Workshop, 2008.

