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Abstract   

Cloud computing offer a prevailing abstraction which 

provide a scalable, virtuale infrastructure as a service 

where the difficulty of fine-grained resource management 

is secreted from the end-user. Running data analytic 

applications in the cloud on enormously large data sets is 

acquire traction as the essential infrastructure can meet 

the extreme need of scalability. Naturally, these 

applications (e.g., business intelligence, surveillance 

video searches) influence the MapReduce framework that 

can decompose a large computation into a set of smaller 

parallelizable computations. More often than not the 

underlying storage architecture for running a MapReduce 

application is based on an Internet-scale filesystem, such 

as GFS, which does not provide a standard (POSIX) 

interface.  

1. Introduction 

Cloud computing is a compelling new paradigm 

that provides a scalable, virtualized infrastructure 

as a service, thereby, enabling the end-user to 

exploit supercomputing power on demand without 

investing in huge infrastructure and management 

costs. This potential for unlimited scaling has made 

possible a plethora of cloud-based data analytics 

applications that can process extremely large sets 

of data.  

 

Such data-intensive applications where the 

computation can be easily decomposed into smaller 

parallel computations over a  

partitioned data set are a perfect match for 

Google’s MapReduce framework [2] that provides 

a simple programming model using map and 

reduce functions over key/value pairs that can be 

parallelized and executed on a large cluster of 

machines.  

 

More recently, an open source version of 

MapReduce developed under the Apache Hadoop 

project is becoming a popular platform for building 

cloud data analytics applications. 

 

In this paper, we revisit the debate on the need of a 

new non-POSIX storage stack for cloud analytics 

and argue, based on an initial evaluation, that it can  

be built on traditional POSIX-based cluster 

filesystems. Existing deployments of cluster file  

 

 

 

systems such as Lustre, PVFS, and GPFS [4] show 

us that they can be extremely scalable without 

being extremely expensive. Commercial cluster file 

systems can scale to thousands of nodes while 

supporting 100 GBps sequential throughput. 

Furthermore, these file systems can be configured 

using commodity parts for lower costs without the 

need for specialized SANs or enterprise-class 

storage. More importantly, these file systems can 

support traditional applications that rely on POSIX 

file API’s and provide a rich set of management 

tools. Since the cloud storage stack may be shared 

across different classes of applications it is prudent 

to rely on standard file interfaces and semantics 

that can also easily support MapReduce style 

applications instead of being locked in with a 

particular non-standard interface. To this end, we 

address the challenges posed by the access 

characteristics of cloud analytics applications to 

traditional cluster file systems. First, we observe 

that MapReduce-based applications can co-locate 

computation with data, thus reducing network 

usage. We present modifications to the cluster 

filesystem’s data allocation and data layout 

information to better support the requirements of 

data locality for analytics applications. Next, we 

observe that using large stripe unit sizes (or 

chunks) benefits MapReduce applications at the 

cost of other traditional workloads. To address that, 

we introduce a novel concept called metablock that 

can enable the choice of a larger block  granularity 

for MapReduce applications to coexist with a 

smaller block granularity required for pre-fetching 

and disk accesses for traditional applications. 

While most analytics applications are read-

intensive, we also enable write affinity that can 

better the performance of storing intermediate 

results by writing data locally. 

 

We compare the performance of both an Internet 

scale filesystem (Hadoop’s HDFS) with a 

commercial cluster filesystem (IBM’s GPFS) over 

a variety of workloads. We show that a suitably 

optimized cluster filesystem can match the 

performance of HDFS for a MapReduce workload 

(ideal data access pattern for HDFS) while 

outperforming it for the data access patterns of 

traditional applications. Concurrent to our work, 

researchers at CMU have undertaken an effort to 
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provide support for Hadoop’s MapReduce 

framework with PVFS [5]. It should be noted that 

we don’t report HDFS performance for traditional 

file benchmarks since these benchmarks cannot be 

run on HDFS (even running with a FUSE layer 

only provides a subset of the POSIX interface). 

 

2. Challenges 

 
In this section, we evaluate the suitability of cluster 

file systems for cloud analytics applications. In our 

study, we selected for  comparison the HDFS 

(Hadoop 18.1) filesystem which is the de-facto 

filesystem for Apache’s Hadoop project and IBM’s 

GPFS cluster filesystem which is widely deployed 

in high-performance computing sites and whose 

source was readily available to us for modification. 

 

The hardware configuration we used is based on 

the IBM iDataPlex modular hardware architecture 

consisting of a single iDataPlex system with 42 

nodes in two racks, where each node has 2 quad-

core   .2 GHz Intel Core2Duo CPUs, 8 GB RAM 

and 4 750 GB SATA drives. The nodes are 

connected by 2 Gigabit Ethernet switches (one per 

rack) with a 1 Gbps inter-switch link. The switch is 

Blade Network Technologies G8000 RackSwitch 

with 48 1 Gbps ports. The software running on 

each of these nodes in Linux 2.6.18 (CentOS 5.3) 

with two disks dedicated to the ext3 file system for 

storing intermediate results from computations and 

the remaining two disks dedicated to either GPFS 

or HDFS.  

 

Function shipping. The first drawback we found 

of cluster file systems is that they do not support 

shipping computation to data, a key feature 

exploited by the MapReduce class of applications 

[2]. In addition, the default block sizes are small 

which leads to a high task overhead for MapReduce 

applications that schedule one task per data block. 

 

To evaluate the effect of function shipping, we 

measured performance of a simple MapReduce 

grep application with GPFS and HDFS. The input 

to the grep application is a 16 GB text file. The 

Hadoop implementation did not take advantage of 

any block location information in GPFS and 

function shipping was not enabled as a result. 

Furthermore, we used the default block size of 64 

MB in HDFS, whereas for GPFS we used a block 

size of 2 MB with pre-fetching turned on by 

default. 

The lack of co-location of computation with data, 

and the use of small blocks, are the main reasons 

for the slow-down in GPFS. In fact, the total 

amount of data transferred exceeds the input data 

size because of the default pre-fetching in GPFS. 

The  filesystem sees 2 MB of data being read 

sequentially and pre-fetches multiple data blocks to 

satisfy expected reads.However, the map task for 

the next block may be  cheduled on another node 

and thus most of the pre-fetched data is not used. 

 

High availability. Another requirement for  data 

intensive applications is the ability to mask the 

failures of commodity components. Programs 

should be able to recover and progress in the event 

of multiple node and disk failures. This requires the 

data to be replicated across multiple nodes such 

that in the event of a node or disk failure, the 

computation can be restarted on a different node. 

Specialized file systems are designed based on this 

philosophy, and are able to tolerate multiple 

failures in the infrastructure GPFS, for example, 

uses a single source replication model, with the 

writer forwarding copies to all replicas. Specialized 

file systems, in contrast, use pipelined replication 

due to two important considerations: first, the out-

bound bandwidth at the writer is not shared across 

multiple streams unlike the single-source model; 

second, write data can be pipelined in sequence 

from a node to the next node in the pipeline while 

the data is being written in the node. 

For traditional applications, cluster file systems 

allow the use of concurrent writers to the same file, 

enabling the sharing of write bandwidth across 

multiple nodes. MapReduce applications usually 

have multiple simultaneous writers (to different 

files), so we don’t expect the benefits of single-

source replication to be significant. We hypothesize 

that it is possible for cluster file systems to match 

the write performance of specialized file systems 

and validate that in the experimental evaluation in 

Sections 4 and 5. However, we are continuing to 

explore the use of pipelined replication in cluster 

file systems. 

 

3. Metablocks 

 
Clearly, the grep application in the previous section 

demonstrated that running a MapReduce based 

application on a specialized file system has much 

better performance. In this section, we first attempt 

to mimic the basic properties of a specialized file 

system in GPFS and show the limitations of this 

approach. Next, we introduce the concept of a 

metablock, highlight the challenges in 

implementing the concept and demonstrate that 

GPFS is able to match the read performance of 

HDFS for MapReduce applications. 
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Large blocks. One approach would be to mimic 

the properties of specialized file systems as 

attempted in [5]. To achieve this, we increase the 

block size to a large value (16 MB) so that the map 

task and disk seek overhead is reduced (as one map 

task is assigned to each data block and will fetch 

the entire block for processing). Furthermore, we 

expose GPFS’s block location information to the 

MapReduce layer in Hadoop so that tasks could be 

scheduled on the node where the data resides. In 

addition, we align the records in the input file with 

block boundaries, because a lack of alignment 

could result in the fetch of a large data block just to 

read a partial record that straddles a block 

boundary. Finally, we turned pre-fetching off to 

avoid the network traffic of transporting large data 

blocks. This particular version of GPFS is referred 

to as GPFS lb (GPFS with large blocks). 

However, the performance parity with HDFS 

comes at a price. Turning off pre-fetching and 

making the unit of caching File Normalized 

Random Normalized Sequential System 

Performance Performance Unmodified GPFS 1 1 

GPFS lb 0.15 2.29 GPFS mb 0.99 1.19: Evaluation 

of GPFS optimizations with Bonnie. large in GPFS 

lb is detrimental to the performance of traditional 

filesystem workloads. Pre-fetching has been 

demonstrated to be extremely beneficial for 

sequential workloads and small block sizes are 

ideal for random workloads. To verify these 

effects, we compared unmodified GPFS to GPFS lb 

using the popular Bonnie filesystem benchmark 

[1]. The results show a marked performance 

degradation for random workloads with the 

optimizations used in this section. There is an 

improvement for sequential workloads due to the 

large block size but the scale is not commensurate 

to the extent of the previously mentioned 

degradation.  

 

Metablocks. The results of the evaluation indicate 

an interesting tradeoff in optimizing for data 

intensive and traditional applications. While a large 

block size is needed to minimize seek overheads 

and create a reasonable number  of tasks in 

MapReduce applications, a small block size is 

needed for effective cache management and to 

reduce the pre-fetch overhead particularly when 

application records could span multiple blocks on 

different disks. Ideally, we need the best of both 

worlds where both seeks and pre-fetching are 

optimized so that both MapReduce and traditional 

applications can be supported. If the cluster file 

system could expose a large node-local block size 

to the MapReduce application and use a smaller 

block size for internal book-keeping, data transfer 

and pre-fetching, we can achieve the tradeoff. To 

better understand how we can manage this, we first 

describe the block allocation strategy used by 

GPFS. 

GPFS implements wide-striping across the file 

system where large files are divided into equal 

sized blocks, and consecutive blocks are placed on 

different disks in a round-robin fashion. An 

allocation map keeps track of all disk blocks in the 

file system. To enable parallel updates to the 

allocation 3 bit map, the map is divided into a large 

number of lock-able allocation regions, with at 

least n regions for an n node system. Each region 

contains the allocation status of 1=nth of the disk 

blocks on every disk in the file system. This bitmap 

layout allows GPFS to allocate disk space properly 

striped across all disks by accessing only a single 

allocation region at a time. This approach 

minimizes lock conflicts because different nodes 

can allocate space from different regions. The 

allocation manager is responsible for keeping the 

free disk space statistics loosely- up-to-date across 

the cluster. 

To balance the block size selection tradeoff, we 

define a new logical construct called a metablock. 

A metablock is basically a consecutive set of 

blocks of a file that are allocated on the same disk. 

For example, 64 blocks of size 1 MB could be 

grouped into a 64 MB metablock. The GPFS 

round-robin block allocation is modified to use a 

metablock as the allocation granularity for the 

striping across the disks. Consequently, the block 

location map returned to the MapReduce 

application is also at the metablock granularity with 

the guarantee that all blocks in the metablock are in 

the same disk. Internally for all other pre-fetching 

and accesses, GPFS uses the normal block size 

granularity (which is 1 MB in our example). 

However there are two important challenges in 

implementing metablocks in GPFS – contiguity and 

fragmentation. First, it may not be possible to get a 

region with a set of blocks that is able to satisfy the 

contiguity requirement of a metablock. In such a 

situation, the node trying to allocate a metablock 

will need to request a region with a contiguous set 

of blocks that can be used to build a metablock. 

However, a request to the allocation manager may 

incur network latency and affect the performance of 

a MapReduce application. To remedy the situation, 

a node prefetches a pool of contiguous regions 

ahead of time and requests new regions when the 

cardinality of the pool drops below a threshold. 

This means that a node will always have a ready 

pool of contiguous regions and will not incur 

network latency in the path of an I/O request.  

A possible cause for concern is that the metablock 

optimization, which changes GPFS’s allocation 

scheme, could have affected the performance of 
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traditional applications. To confirm this hypothesis, 

we compared unmodified GPFS to GPFS mb. The 

results of the experiment show no marked 

difference between the two file systems. The other 

results from Bonnie were also consistent with this 

result. Consequently, we conclude that metablocks 

do not hurt the performance of GPFS for traditional 

applications. It is important to note that this change 

to the allocation policy of the cluster file system 

does not impact the interface to the applications, 

and preserves the POSIX semantics provided by 

the unmodified system. 

 

4. Real – Life Benchmarks 

 
We selected three benchmarks to analyze the 

relative efficiencies of the specialized and cluster 

file systems and their effect on MapReduce 

applications: Hadoop grep, Teragen and Terasort 

applications. Teragen does a parallel generation of 

a large data set and is consequentially write-

intensive. The grep application does a search for a 

regular expression on the input data set and is read-

intensive and Terasort does a parallel mergesort on 

the keys in the data set and does heavy reading and 

writing in phases. 

We used the default block size of 64 MB for HDFS 

and set the metablock size for GPFS to be 64 MB 

as well, for a fair comparison. We found that using 

1 MB as the block size of GPFS was the best 

compromise between the performance of traditional 

and MapReduce applications, and results presented 

here use that value. Furthermore, we ran the 

benchmarks on 16 node clusters with two 

configurations - in the first, all nodes were in one 

rack, while in the second, the nodes are equally 

distributed across 2 racks. The 1-rack setup 

essentially provides 1 Gbps links between each 

node-pair, while the 2-rack setup has a network 

bottleneck in the form of a single 1 Gbps link 

between the two 8-node sub-clusters. In the 2-rack 

setup, when we enable 2-way replication, we 

configure the file systems to replicate 1We have 

isolated this issue to an unusual interaction between 

our data ingestion and GPFS allocation, and are 

improving the performance further. 4 each block so 

that one copy is on each rack, for better fault 

tolerance. 0 500 1000 1500 2000 Grep-r1 Grep-r2 

Teragen-r1 Teragen-r2 Sort-r1 Sort-r2 Execution 

Time (seconds) Execution time HDFS and GPFS 

with metablocks HDFS-rep1 GPFS_mb rep1 

HDFS-rep-2 GPFS_mb-rep2 : Benchmark 

evaluation of HDFS and  PFS mb, using 160GB of 

input data and 16 nodes; replication factor = 1 (rep-

1), 2 (rep-2). The 1-rack configuration is marked as 

r1, and the 2-rack configuration as r2.  

5. Future Optimizations 
 

The results above encouraged us to look more 

closely at avenues for improvement of cluster file 

systems for MapReduce workloads. The most 

important was trying to make writes as network 

efficient in GPFS as they are in HDFS (due to the 

first replica being written to the local node). We 

designed an extension to metablocks which has 

allowed GPFS to potentially match the 

performance of HDFS for writes as well. The 

extension involves adding an ioctl call to GPFS 

which lets an application specify the set of hosts to 

be used by the metablock allocation scheme for a 

particular file. This allows Hadoop applications to 

specify that the first copy of data should reside on 

the local host, which is the policy used by HDFS. 

This technique reduces the network traffic during 

writes, and significantly improves write 

performance (up to a factor of 5). True to our 

theme, we use GPFS with pre-fetching enabled to 

benefit traditional as well as MapReduce 

workloads. This, however, exposes two interesting 

questions we are currently exploring: (1) Can we 

design an adaptive prefetching scheme such that it 

only consumes spare network bandwidth, and does 

not contend with critical network traffic? (2) Can 

any MapReduce workloads benefit from such 

prefetching, thereby outperforming HDFS? 

Similarly, we are also pursuing use cases of 

MapReduce workloads where GPFS, can in fact, 

outperform HDFS by leveraging features unique to 

a true file system such as ability to cope with 

client-side caching, and simultaneously support 

random and sequential workloads. 

 

 
6. Conclusions 

 
This paper evaluate the discuss whether cluster file 

systems can potentially go with the performance of 

Internet scale filesystems for cloud-based analytics 

applications. We inspect the needs of data intensive 

applications and prove that cluster file systems are 

scarce in support for large block sizes and revealing 

block location information to MapReduce 

applications. In order to solve this, we bring in the 

idea of metablocks that provide the delusion of 

large blocks for MapReduce applications, as 

providing the profit of small blocks for old 

applications at the same time. We demonstrate that 

a cluster file system improved with metablocks can 

provide the best performance. 
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